[Из песочницы] Обнаружение лиц на видео с помощью Movidius Neural Compute Stick

Не так давно в свет вышло устройство Movidius Neural Compute Stick (NCS), представляющее собой аппаратный ускоритель для нейронных сетей с USB интерфейсом. Меня заинтересовала потенциальная возможность применения устройства в области робототехники, поэтому я приобрел его и задумал запустить какую-нибудь нейросеть. Однако большинство существующих примеров для NCS решают задачу классификации изображений, а мне хотелось попробовать кое-что другое, а именно обнаружение лиц. В этой публикации я хотел бы поделиться опытом, полученным в ходе такого эксперимента.

Весь код можно найти на GitHub.

image

Читать дальше →

[Из песочницы] Бинарная матричная нейронная сеть

Предлагается вариант искусственной нейронной сети в виде матрицы, входами и выходами которой являются наборы битов, а нейроны реализуют функции двоичной логики нескольких переменных. Такая сеть значительно отличается от сетей перцептронного типа и может дать такие преимущества как конечное число вариантов полного перебора функций сети, а следовательно и конечное время обучения, сравнительная простота аппаратной реализации.

image
Читать дальше →

Учим робота готовить пиццу. Часть 2: Состязание нейронных сетей


Содержание


  • Часть 1: Получаем данные

В прошлой части, удалось распарсить сайт Додо-пиццы и загрузить данные об ингредиентах, а самое главное — фотографии пицц. Всего в нашем распоряжении оказалось 20 пицц. Разумеется, формировать обучающие данные всего из 20 картинок не получится. Однако, можно воспользоваться осевой симметрией пиццы: выполнив вращение картинки с шагом в один градус и вертикальным отражением — позволяет превратить одну фотографию в набор из 720 изображений. Тоже мало, но всё же попытаемся.


Попробуем обучить Условный вариационный автоэнкордер (Conditional Variational Autoencoder), а потом перейдёт к тому, ради чего это всё и затевалось — генеративным cостязательным нейронным сетям (Generative Adversarial Networks).

Читать дальше →

[Перевод] Алгоритм машинного обучения Flappy Bird

Я познакомлю вас с полным туториалом на HTML5 с демо по алгоритму машинного обучения видеоигре Flappy Bird. Цель этого эксперимента — написать игровой контроллер искусственного интеллекта на основе нейросетей и генетического алгоритма.

То есть мы хотим создать ИИ-робота, который сможет учиться оптимальной игре во Flappy Bird. В результате наша маленькая птица сможет спокойно пролетать через препятствия. В наилучшем сценарии она не умрёт никогда.

Прочитав теорию, лежащую в основе этого проекта, можно скачать исходный код в конце этого туториала. Весь код написан на HTML5 с использованием фреймворка Phaser. Кроме того, мы использовали библиотеку Synaptic Neural Network для реализации нейросети, чтобы не создавать её с нуля.

Демо


Для начала посмотрите демо, чтобы оценить алгоритм в действии:



Запустить в полноэкранном режиме
Читать дальше →


Последние посты