[Из песочницы] Обнаружение лиц на видео с помощью Movidius Neural Compute Stick

Не так давно в свет вышло устройство Movidius Neural Compute Stick (NCS), представляющее собой аппаратный ускоритель для нейронных сетей с USB интерфейсом. Меня заинтересовала потенциальная возможность применения устройства в области робототехники, поэтому я приобрел его и задумал запустить какую-нибудь нейросеть. Однако большинство существующих примеров для NCS решают задачу классификации изображений, а мне хотелось попробовать кое-что другое, а именно обнаружение лиц. В этой публикации я хотел бы поделиться опытом, полученным в ходе такого эксперимента.

Весь код можно найти на GitHub.

image

Читать дальше →

[Перевод] Добро пожаловать в эру глубокой нейроэволюции

image

От имени команды Uber AI Labs, которая также включает Joel Lehman, Jay Chen, Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such и Xingwen Zhang.

В области обучения глубоких нейронных сетей (DNN) с большим количеством слоев и миллионами соединений, для тренировки, как правило, применяется стохастический градиентный спуск (SGD). Многие полагают, что способность SGD эффективно вычислять градиенты является исключительной особенностью. Однако мы публикуем набор из пяти статей в поддержку нейроэволюции, когда нейронные сети оптимизируются с помощью эволюционных алгоритмов. Данный метод также является эффективным при обучении глубоких нейронных сетей для задач обучения с подкреплением (RL). Uber имеет множество областей, где машинное обучение может улучшить его работу, а разработка широкого спектра мощных подходов к обучению (включая нейроэволюцию), поможет разработать более безопасные и надежные транспортные решения.
Читать дальше →

[Из песочницы] Бинарная матричная нейронная сеть

Предлагается вариант искусственной нейронной сети в виде матрицы, входами и выходами которой являются наборы битов, а нейроны реализуют функции двоичной логики нескольких переменных. Такая сеть значительно отличается от сетей перцептронного типа и может дать такие преимущества как конечное число вариантов полного перебора функций сети, а следовательно и конечное время обучения, сравнительная простота аппаратной реализации.

image
Читать дальше →

Как мы музицировали с нейронными сетями

В 2016 год Google Brain Group выпустил проект Magenta в открытый доступ. Magenta позиционируется как проект, который задает и отвечает на вопросы:«Можем ли мы использовать машинное обучение для создания музыки и искусства достойных внимания? Если да, то как? Если нет, то почему нет?». Вторая цель проекта — это построить сообщество художников, музыкантов и исследователей в области машинного обучения.

Читать дальше →

Краткий курс машинного обучения или как создать нейронную сеть для решения скоринг задачи

image

Мы часто слышим такие словесные конструкции, как «машинное обучение», «нейронные сети». Эти выражения уже плотно вошли в общественное сознание и чаще всего ассоциируются с распознаванием образов и речи, с генерацией человекоподобного текста. На самом деле алгоритмы машинного обучения могут решать множество различных типов задач, в том числе помогать малому бизнесу, интернет-изданию, да чему угодно. В этой статье я расскажу как создать нейросеть, которая способна решить реальную бизнес-задачу по созданию скоринговой модели. Мы рассмотрим все этапы: от подготовки данных до создания модели и оценки ее качества.

Вопросы, которые разобраны в статье:
• Как собрать и подготовить данные для построения модели?
• Что такое нейронная сеть и как она устроена?
• Как написать свою нейронную сеть с нуля?
• Как правильно обучить нейронную сеть на имеющихся данных?
• Как интерпретировать модель и ее результаты?
• Как корректно оценить качество модели?
Поехали!

Нейросетевая игра в имитацию

Здравствуйте, коллеги. В конце 1960-ых годов прошлого века Ричард Фейнман прочитал в Калтехе курс лекций по общей физике. Фейнман согласился прочитать свой курс ровно один раз. Университет понимал, что лекции станут историческим событием, взялся записывать все лекции и фотографировать все рисунки, которые Фейнман делал на доске. Может быть, именно после этого у университета осталась привычка фотографировать все доски, к которым прикасалась его рука. Фотография справа сделана в год смерти Фейнмана. В верхнем левом углу написано: "What I cannot create, I do not understand". Это говорили себе не только физики, но и биологи. В 2011 году, Крейгом Венером был создан первый в мире синтетический живой организм, т.е. ДНК этого организма создана человеком. Организм не очень большой, всего из одной клетки. Помимо всего того, что необходимо для воспроизводства программы жизнедеятельности, в ...Далее...

Библиотека глубокого обучения Tensorflow

Здравствуй, Хабр!



Цикл статей по инструментам для обучения нейронных сетей продолжается обзором популярного фреймворка Tensorflow.


Читать дальше →


Последние посты