Умный поиск: как искусственный интеллект hh.ru подбирает вакансии к резюме

Больше половины соискателей ничего не ищут, а создают резюме и просто ждут, когда их пригласят на собеседование или хотя бы пришлют подходящую вакансию. Когда мы думали, как для них должен выглядеть сайт по поиску работы, то поняли, что им нужна всего одна кнопка.



Делать такую систему мы начали полтора года назад — решили построить на машинном обучении алгоритм, который сам выбирал бы подходящие пользователю вакансии. Но мы очень быстро поняли: вакансии, похожие на резюме, и вакансии, на которые владельцу резюме хочется откликнуться, — далеко не одно и то же. Читать дальше →

Доступный ИИ для любой компании: Cloud AutoML

image
Привет, Хабр! Сегодня информацией делится Джиа Ли, глава департамента R&D, Cloud AI. Джиа с командой сделали ИИ легким в применении и доступным даже для неспециалистов. Надеемся, что теперь ИИ придет в каждый бизнес, как некогда пришел компьютер в каждый дом, и читаем, как выглядит и что умеет Cloud AutoML.

Читать дальше →

R c H2O на Spark в HDInsight

imageH2O – библиотека машинного обучения, предназначенная как для локальных вычислений, так и с использованием кластеров, создаваемых непосредственно средствами H2O или же работая на кластере Spark. Интеграция H2O в кластеры Spark, создаваемые в Azure HDInsight, была добавлена недавно и в этой публикации (являющейся дополнением моей прошлой статьи: R и Spark) рассмотрим построение моделей машинного обучения используя H2O на таком кластере и сравним (время, метрика) его с моделями предоставляемых sparklyr, действительно ли H2O киллер-приложение для Spark?

да, но это не точно


Последние посты