Кто такой Data Scientist — глазами работодателя. Интервью с Авито и Spice IT

Ксения Суворова, директор по развитию Фонтанки.ру, и Андрей Мирошниченко, координатор офлайн-программы «Data Scientist», специально для блога Нетологии подготовили интервью с представителями компании Авито и HR-агентства Spice IT о том, чего ждет рынок от представителей профессии Data Scientist. Сейчас почти каждая статья о data science или машинном обучении начинается с того, что «три года назад американская исследовательская компания подсчитала, что через четыре года будет нужен миллион data scientist’ов». И даже в России ощущается острая нехватка людей с экспертизой. При этом есть множество возможностей освоить эту сферу: онлайн и офлайн-курсы, тренажёры и книги — то есть исправить текущую ситуацию реально. Беседовал Андрей Мирошниченко — координатор офлайн-программы «Data Scientist». image В прошлый раз мы сделали краткую выжимку двух интервью, и рассказали о том, как выглядит профессия специалиста по большим данным со стороны не сотрудника, а работодателя. Сегодня же мы публикуем полные интервью с Авито и Spice IT. ...Далее...

Кто такой Data Scientist — глазами работодателя

Ксения Суворова, директор по развитию Фонтанки.ру, и Андрей Мирошниченко, куратор офлайн-программы «Data Scientist», специально для блога Нетологии рассказали о профессии Data Scientist со стороны работодателя: какие специалисты требуются рынку, каких компетенций от них ждут и как происходит найм на работу. Сейчас всё сложилось таким образом, как когда-то история с продакт- и проджект-менеджментом: специалисты есть на рынке, у них уже достаточно устоявшаяся рыночная стоимость, существуют вакансии, но при этом не каждый знает, кто это такой и зачем этот человек вообще нужен бизнесу. Поэтому мы решили поговорить с компанией «Авито», HR-агентством «Spice IT» и компанией Storia.me, чтобы понять, каково развитие профессии на самом деле. image

Взгляд компании Avito с позиции прямого нанимателя — рассказывает Александра Головина

«Потребность в специалистах data science очень велика и в дальнейшем будет только расти. Однако, возможностей для обучения тоже много: любой человек, который понимает, что ему не хватает академического образования, может пройти курсы и получить необходимую базу. Вопрос, скорее, в том, кто и почему приходит в профессию. На собеседовании соискатели говорят, что интересуются машинным обучением, а когда начинаешь спрашивать почему, отвечают: «Это модно». И всё. Понимания, как применить знания, нет. ...Далее...

Big Data в Hadoop по подписке в облаке SAP

Сегодня мы расскажем об одном из сервисов SAP, который характеризует наш новый подход к созданию продуктов и работе с клиентами. Это решение SAP Cloud Platform Big Data Services, которое предлагает клиентам возможность работать с большими данными в Hadoop по модели подписки на облачное приложение.
В первой статье мы сделаем обзор того, как анализ Big Data может пригодиться бизнесу на практике, как отличаются облачного и on-premise размещения Hadoop, а про основные функции, сервисы и технологии в SAP Cloud Platform Big Data Services. В следующих статьях мы подробнее разберём технологические особенности и отдельные сервисы внутри данного решения.

Big Data в бизнесе

image

Читать дальше →

Рубрика «Читаем статьи за вас». Октябрь — Ноябрь 2017


Привет, Хабр! По традиции, представляем вашему вниманию дюжину рецензий на научные статьи от членов сообщества Open Data Science из канала #article_essense. Хотите получать их раньше всех — вступайте в сообщество ODS!


Статьи выбираются либо из личного интереса, либо из-за близости к проходящим сейчас соревнованиям. Напоминаем, что описания статей даются без изменений и именно в том виде, в котором авторы запостили их в канал #article_essence. Если вы хотите предложить свою статью или у вас есть какие-то пожелания — просто напишите в комментариях и мы постараемся всё учесть в дальнейшем.


Статьи на сегодня:

Читать дальше →

Использование R для «промышленной» разработки

Является продолжением предыдущих публикаций. Не секрет, что при упоминании R в числе используемых инструментов вторым по популярности является вопрос о возможности его применения в «промышленной разработке». Пальму первенства в России неизменно держит вопрос «А что такое R?»


Попробуем разобраться в аспектах и возможности применения R в «промышленной» разработке.


Читать дальше →

Ежемесячная рубрика «Читаем статьи за вас». Сентябрь 2017


Привет, Хабр! Мы продолжаем нашу традицию и снова выпускаем ежемесячный набор рецензий на научные статьи от членов сообщества Open Data Science из канала #article_essense. Хотите получать их раньше всех — вступайте в сообщество ODS!


Статьи выбираются либо из личного интереса, либо из-за близости к проходящим сейчас соревнованиям. Напоминаем, что описания статей даются без изменений и именно в том виде, в котором авторы запостили их в канал #article_essence. Если вы хотите предложить свою статью или у вас есть какие-то пожелания — просто напишите в комментариях и мы постараемся всё учесть в дальнейшем.

Читать дальше →

[Из песочницы] Простой WebScraping на R через API hh.ru

Доброго времени суток, уважаемые читатели


Не так давно преподаватель дал задание: cкачать данные с некоторого сайта на выбор. Не знаю почему, но первое, что пришло мне в голову — это hh.ru.


Далее встал вопрос: "А что же собственно будем выкачивать?", ведь на сайте порядка 5 млн. резюме и 100.000 вакансий.

Читать дальше →

[Перевод] Какой язык программирования учить для работы с данными?



У начинающего специалиста по данным (data scientist) есть возможность выбрать один из множества языков программирования, который поможет ему быстрее освоить данную науку.

Тем не менее, никто точно не скажет вам, какой язык программирования лучше всего подходит для этой цели. Ваш успех как специалиста в данной области будет зависить от множества факторов и сегодня мы постараемся их рассмотреть, а в конце статьи вы сможете проголосовать за тот язык программирования, который вы считаете наиболее подходящим для работы с данными.
Читать дальше →

«Теперь он и тебя сосчитал» или Наука о данных с нуля (Data Science from Scratch)

Не так давно я рассказывал о том, как случайно познакомился с понятием Data Science, благодаря курсам от Cognitive Class. Кратко резюмируя ту статью скажу, что по результатам курса я толком ничему не научился, но мне стало любопытно, поэтому спустя какое-то время я побежал в магазин и купил книгу, которой и посвящён данный материал.

Не знаю на сколько уместно на Хабре описывать возможность обучения по печатному самоучителю, но в конце концов этот хаб же про учебный процесс в IT и поэтому если вам интересно, чему может научить эта книга полного новичка в области Data Science и стоит ли тратить на этот этап время и деньги, то милости прошу под кат.

Читать дальше →

Нейрокурятник: часть 4 — итоговая модель и код на прод

image Типичный день в нейрокурятнике — куры часто еще и крутятся в гнезде Чтобы довести, наконец, проект нейрокурятника до своего логического завершения, нужно произвести на свет работающую модель и задеплоить ее на продакшен, да еще и так, чтобы соблюдался ряд условий:
  • Точность предсказаний не менее 70-90%;
  • Raspberry pi в самом курятнике в идеале мог бы определять принадлежности фотографий к классам;
  • Нужно как минимум научиться отличать всех кур друг от друга. Программа максимум — также научиться считать яйца;
В данной статье мы расскажем что же в итоге у нас получилось, какие модели мы попробовали и какие занятные вещи нам попались на дороге. Статьи про нейрокурятник
Заголовок спойлера
  1. Вступление про обучение себя нейросетям
  2. Железо, софт и конфиг для наблюдения за курами
  3. Бот, который постит события из жизни кур — без нейросети
  4. Разметка датасетов
  5. Работающая модель для распознавания кур в курятнике
  6. ...Далее...
  • Новее
  • 1


Последние посты