Custdev в разработке продуктов для видеонаблюдения

Практически все компании, которые занимаются разработкой модулей видеоанализа делают это, исходя из экстраполяции собственной инженерной мысли. Компания думает: «Мы сможем разработать функцию, которая, например, будет обнаруживать оставленные предметы, или детектировать огонь, или считать людей на кассах магазинов и т.п.». И делает это. Решение о том, какой модуль создать принимается в большинстве случаев исходя из возможностей разработчиков и ресурсов компании. В результате часто модули, которые получаются, становятся своего рода техническими экспериментами. И когда их покупают заказчики, внедряют в действующие системы видеонаблюдения и начинают применять на практике, оказывается, что реальной пользы они не несут.

Получается разработка ради разработки, а не ради решения наболевших проблем. А это неправильно и невыгодно. Читать дальше →

Использование Intel Movidius для нейронных сетей

Введение


Мы занимаемся разработкой глубоких нейронных сетей для анализа фото, видео и текстов. В прошлом месяце мы купили для одного из проектов очень интересную штуковину:
Intel Movidius Neural Compute Stick.
Intel MNCS

Это специализированное устройство для нейросетевых вычислений. По сути, внешняя видеокарточка, заточенная под нейронные сети, очень компактная и недорогая (~$83). Первыми впечатлениями от работы с Movidius’ом мы и хотим поделиться. Всех заинтересовавшихся прошу под кат.
Читать дальше →

[Перевод] Добро пожаловать в эру глубокой нейроэволюции

image

От имени команды Uber AI Labs, которая также включает Joel Lehman, Jay Chen, Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such и Xingwen Zhang.

В области обучения глубоких нейронных сетей (DNN) с большим количеством слоев и миллионами соединений, для тренировки, как правило, применяется стохастический градиентный спуск (SGD). Многие полагают, что способность SGD эффективно вычислять градиенты является исключительной особенностью. Однако мы публикуем набор из пяти статей в поддержку нейроэволюции, когда нейронные сети оптимизируются с помощью эволюционных алгоритмов. Данный метод также является эффективным при обучении глубоких нейронных сетей для задач обучения с подкреплением (RL). Uber имеет множество областей, где машинное обучение может улучшить его работу, а разработка широкого спектра мощных подходов к обучению (включая нейроэволюцию), поможет разработать более безопасные и надежные транспортные решения.
Читать дальше →

Асинхронная загрузка больших датасетов в Tensorflow

Глубокие нейронные сети сейчас модная тема.

В Сети много тюториалов и видеолекций, и других материалов обсуждающих основные принципы, архитектуру, стратегии обучения и т.д. Традиционно, обучение нейронных сетей производится путем предявления нейронной сети пакетов изображений из обучающей выборки и коррекции коэффициентов этой сети методом обратного распространения ошибки. Одним из наиболее популярных инструментов для работы с нейронными сетями является библиотека Tensorflow от Google.

Нейронная сеть в Tensorflow представляется последовательностю операций-слоев (таких как перемножение матриц, свертка, пулинг и т.д.). Слои нейронной сети совместно с операциями корректировки коэффициентов образуют граф вычислений.

Процесс обучения нейронной сети при этом заключается в "предъявлении" нейронной сети пакетов объектов, сравненнии предсказанных классов с истинными, вычисления ошибки и модификации коэффицентов нейронной сети. При этом Tensoflow скрывает технические подробности обучения и реализацию алгоритма корректировки коэффицентов, и с точки зрения программиста можно говорить в основном только о графе вычислений, производящем "передсказания". Сравните граф выченслений о котором думает программист

...Далее...

[Перевод] Глубокое обучение при помощи Spark и Hadoop: знакомство с Deeplearning4j

Здравствуйте, уважаемые читатели!

Мы вполне убедились в мегапопулярности глубокого обучения (Deep Learning) на языке Python в нашей целевой аудитории. Теперь предлагаем поговорить о высшей лиге глубокого обучения — то есть, о решении этих задач на языке Java при помощи библиотеки Deeplearning4j. Мы перевели для вас июньскую статью из блога компании Cloudera, где в интереснейших подробностях рассказано о специфике этой библиотеки и о глубоком обучении в Hadoop и Spark.

Приятного чтения.
Читать дальше →

[Перевод] Введение в обучение с подкреплением: от многорукого бандита до полноценного RL агента

Привет, Хабр! Обучение с подкреплением является одним из самых перспективных направлений машинного обучения. С его помощью искусственный интеллект сегодня способен решать широчайший спектр задач: от робототехники и видеоигр до моделирования поведения покупателей и здравоохранения. В этой вводной статье мы изучим главную идею reinforcement learning и с нуля построим собственного самообучающегося бота.


Читать дальше →

AlphaGo Zero совсем на пальцах

Завтра искусственный интеллект поработит Землю и станет использовать человеков в качестве смешных батареек, поддерживающих функционирование его систем, а сегодня мы запасаемся попкорном и смотрим, с чего он начинает. 19 октября 2017 года команда Deepmind опубликовала в Nature статью, краткая суть которой сводится к тому, что их новая модель AlphaGo Zero не только разгромно обыгрывает прошлые версии сети, но ещё и не требует никакого человеческого участия в процессе тренировки. Естественно, это заявление произвело в AI-коммьюнити эффект разорвавшейся бомбы, и всем тут же стало интересно, за счёт чего удалось добиться такого успеха. По мотивам материалов, находящихся в открытом доступе, Семён sim0nsays записал отличный стрим:
А для тех, кому проще два раза прочитать, чем один раз увидеть, я сейчас попробую объяснить всё это буквами. Сразу хочу отметить, что стрим и статья собирались в значительной степени по мотивам дискуссий на closedcircles.com, отсюда и спектр рассмотренных вопросов, и специфическая манера повествования. Ну, поехали. ...Далее...

RNN: может ли нейронная сеть писать как Лев Толстой? (Спойлер: нет)

При изучении технологий Deep Learning я столкнулся с нехваткой относительно простых примеров, на которых можно относительно легко потренироваться и двигаться дальше.

В данном примере мы построим рекуррентную нейронную сеть, которая получив на вход текст романа Толстого «Анна Каренина», будет генерировать свой текст, чем-то напоминающий оригинал, предсказывая, какой должен быть следующий символ.

Структуру изложения я старался делать такой, чтобы можно было повторить все шаги новичку, даже не понимая в деталях, что именно происходит внутри этой сети. Профессионалы Deep Learning скорее всего не найдут тут ничего интересного, а тех, кто только изучает эти технологии, прошу под кат.
Читать дальше →

RNN: учим нейронную сеть писать, как Лев Толстой

При изучении технологий Deep Learning я столкнулся с нехваткой относительно простых примеров, на которых можно относительно легко потренироваться и двигаться дальше.

В данном примере мы построим рекуррентную нейронную сеть, которая получив на вход текст романа Толстого «Анна Каренина», будет генерировать свой текст, чем-то напоминающий оригинал, предсказывая, какой должен быть следующий символ.

Структуру изложения я старался делать такой, чтобы можно было повторить все шаги новичку, даже не понимая в деталях, что именно происходит внутри этой сети. Профессионалы Deep Learning скорее всего не найдут тут ничего интересного, а тех, кто только изучает эти технологии, прошу под кат.
Читать дальше →

RNN: учим нейронную сеть писать как Лев Толстой

При изучении технологий Deep Learning я столкнулся с нехваткой относительно простых примеров, на которых можно относительно легко потренироваться и двигаться дальше.

В данном примере мы построим рекуррентную нейронную сеть, которая получив на вход текст романа Толстого «Анна Каренина», будет генерировать свой текст, чем-то напоминающий оригинал, предсказывая, какой должен быть следующий символ.

Структуру изложения я старался делать такой, чтобы можно было повторить все шаги новичку, даже не понимая в деталях, что именно происходит внутри этой сети.
Профессионалы Deep Learning скорее всего не найдут тут ничего интересного, а тех, кто только изучает эти технологии, прошу под кат.
Читать дальше →
  • Новее
  • 1


Последние посты