Как нейросети помогают в e-learning

Рассказываем, что такое нейросети, как они работают и помогают учиться в интернете. Бонусом — подборка полезных блогов о нейронных сетях на английском языке.

Читать дальше →

Использование Intel Movidius для нейронных сетей

Введение


Мы занимаемся разработкой глубоких нейронных сетей для анализа фото, видео и текстов. В прошлом месяце мы купили для одного из проектов очень интересную штуковину:
Intel Movidius Neural Compute Stick.
Intel MNCS

Это специализированное устройство для нейросетевых вычислений. По сути, внешняя видеокарточка, заточенная под нейронные сети, очень компактная и недорогая (~$83). Первыми впечатлениями от работы с Movidius’ом мы и хотим поделиться. Всех заинтересовавшихся прошу под кат.
Читать дальше →

«Человек» искусства: способен ли искусственный интеллект творить?

С развитием нейросетей им придумывают всё более разнообразные способы применения. С их помощью обучаются автопилоты Tesla, а распознавание лиц используется не только для обработки фотографий приложениями типа Prisma, но и в системах безопасности. Искусственный интеллект учат диагностировать болезни. В конце концов, с его помощью даже выигрывают выборы.

Но есть одна сфера, которая традиционно считалась принадлежащей исключительно человеку — творчество. Однако и это утверждение начинают ставить под сомнение. Ли Седоль, проигравший AlphaGo, признался: «Поражение заставило меня засомневаться в человеческой креативности. Когда я увидел, как играет AlphaGo, то усомнился в том, насколько хорошо играю сам». Поэтому в сегодняшнем посте давайте поговорим о том, способны ли роботы ступить на территорию искусства, в пространство креативности, а значит эмоций и восприятия.

Читать дальше →

Первый суперкомпьютер DGX-1 на базе Tesla V100 применят в медицине

Ученые из Центра клинических научных исследований (Center of Clinical Data Science) станут первыми, кто сможет обрабатывать данные с помощью суперкомпьютера для глубокого обучения DGX-1 на базе восьми графических процессоров Tesla V100. V100 показывают результат в 960 терафлопс при вычислениях FP16 благодаря технологии Volta Tensor Core.

Читать дальше →

Машинное обучение в RapidMiner

Дмитрий Соболев, Игорь Мастерной, Рафаэль Зубаиров Не заметить, как быстро растет общий объем собираемых метрик, просто невозможно. Увеличивается не только частота с которой автоматические системы собирают данные, пропускная способность хранилищ данных, но и сам набор метрик, которые мы можем использовать. Эта тенденция наиболее явно выражена в IoT, но и другие отрасли могут похвастаться огромным набором источников данных — публичных или доступных по специальной подписке. Увеличение объема данных создает новые вызовы для аналитиков и специалистов, работающих над оптимизацией бизнес-задач. Темпы развития мировой экономики увеличиваются, но именно быстрая реакция на изменения на микроуровне позволяет отдельным компаниям расширяться. И здесь на помощь приходят инструменты анализа данных и машинного обучения. В 2000-х машинное обучение и глубокий анализ данных были уделом университетских групп и специализированных стартапов. Сегодня любая компания имеет доступ к практически неограниченному и алгоритмов, подходов и готовых решений для создания автоматических систем, а также целому набору продуктов для анализа данных. Машинное обучение сейчас используется не только корпорациями уровня Microsoft и Google, даже небольшие компании могут воспользоваться преимуществами, которые дает качественный анализ данных или система рекомендаций. Если до недавнего времени применение подобных методов требовало найма программистов, аналитиков, дата-сайентистов, то сейчас на рынке появляются сервисы и приложения для машинного обучения, которые позволяют в более дружелюбной форме, с использованием графического интерфейса, обрабатывать данные и строить предсказательные модели. Использовать их способен даже человек с минимальными знаниями в этой области. Сейчас тройка лидеров в автоматизированном и упрощённом машинном обучении состоит из DataRobot, RapidMiner и BigMl. В этой статье мы подробно рассмотрим RapidMiner — расскажем о том, что он умеет и как может вам облегчить жизнь. ...Далее...

Случайный лес vs нейросети: кто лучше справится с задачей распознавания аудио

Исторически сложилось так, что наибольшего успеха глубокое обучение достигло в задачах image processing – распознавания, сегментации и обработки изображений. Однако не сверточными сетями едиными, как говорится, живет наука о данных.

Мы попробовали составить гайд по решению задач, связанных с обработкой речи. Самой популярной и востребованной из них является, вероятно, распознавание того, что именно говорят, анализ на семантическом уровне, но мы обратимся к более простой задаче – определению пола говорящего. Впрочем, инструментарий в обоих случах оказывается практически одинаков.

Читать дальше →

Нейрокурятник ч.0. Или нейро- без курятника

Нейрокурятник часть ноль. Или нейро- без курятника. Или как правильно закоптиться в нейросети.

image Курочка снесла яичко. Сам процесс выглядит ужасно. Результат — съедобно. Массовый геноцид кур. В этой статье будет описано:
  1. Где, как и почему можно получить небольшое качественное самообразование в сфере работы с нейросетями БЕСПЛАТНО, СЕЙЧАС и СОВСЕМ НЕ БЫСТРО;
  2. Будет описана логика рекурсии и будут порекомендованы книги по теме;
  3. Будет описан список основных терминов, которые нужно разобрать на 2-3 уровня абстракции вниз;
  4. Будет приведен ipynb-notebook, который содержит необходимые ссылки и базовые подходы;
  5. Будет немного своеобразного саркастичного юмора;
  6. Будут описаны некоторые простые закономерности, с которыми вы столкнетесь при работе с нейросетями;
Статьи про нейрокурятник
Заголовок спойлера
  1. Вступление про обучение себя нейросетям
  2. Железо, софт и конфиг для наблюдения за курами
  3. Разметка датасетов
  4. Параллельное участие в соревнованиях, визуализации внутренностей нейросетей, развитие архитектур моделей
  5. Работающая модель для распознавания кур в курятнике
  6. ...Далее...

Второе почетное. Заметки участника конкурса Dstl Satellite Imagery Feature Detection



Недавно закончилось соревнование по машинному обучению Dstl Satellite Imagery Feature Detection в котором приняло участие аж трое сотрудников Avito. Я хочу поделиться опытом участия от своего лица и рассказать о решении.
Читать дальше →


Последние посты