некоторые аспекты качества обучающих последовательностей

На хабре появился ряд статей о качестве образования и как процесса и как результата (уровень выпускников).
Тема заинтересовала и руки зачесались проверить, а как это устроено у пчелок роботов искусственного интеллекта, влияет ли качество обучающей последовательности на результат.
Была выбрана простая сеть из примеров Keras в которую добавил одну строку.
Нас интересует насколько упорядоченность входной обучающей последовательности mnist влияет на результат обучения MLP.

Результат получился неожиданным и странным, пришлось перепроверять многократно, но перейдем к делу и конкретике.

Читать дальше →

[Из песочницы] Перевод с человеческого на ботовский

Началось все с того, что я, как и многие другие, захотел написать бота. Предполагалось, что бот мне будет напоминать всякие разные вещи, которые я постоянно забываю — первый сценарий, который предполагалось реализовать, это чтобы бот мне в 10 вечера говорил о том, чтобы я прочитал все то, что в течение дня записал в свой блокнот.

Читать дальше →

Что нового для мобильных разработчиков в Visual Studio 15.6 Preview

Хабр, привет! Меня зовут Ромуальд (можно просто Роман) Здебский. Я больше 11 лет работаю в Microsoft. В последние годы помогал ключевым партнерам Microsoft в выпуске популярных игр и приложений для платформы Windows, например клиентов ВКонтакте для Windows Store, таких игр как World Of Tanks Blitz, Cut The Rope 2 и многих других. С технологической точки зрения много занимался XAML-фреймворками и технологиями доступа к данным. Сейчас сферой моих технологических интересов является разработка мобильных приложений с помощью Visual Studio и Xamarin, технологии доступа к данным в Azure, CosmosDB и др. В прошлом месяце мы выпустили Visual Studio 2017 15.5 с новыми возможностями, включая эмулятор iOS Remoted Simulator, доступный всем разработчикам, средство просмотра XAML в режиме реального времени в эмуляторах Android с помощью Xamarin Live Player, новые шаблоны проектов Xamarin.Forms для .NET Standard и усовершенствованный механизм связывания с Mac. В январе стала доступна предварительная версия Visual Studio 2017 15.6. В этой статье мы обсудим, что было добавлено в эту версию, включая подготовку среды macOS сборки проектов, развертывание на iOS через Wi-Fi, просмотр интерфейса на базе XAML в эмуляторе Remoted iOS Simulator в реальном времени и многое другое. ...Далее...

Знакомые лица: алгоритмы создания «типичного» портрета


Автор: Андрей Сорокин, Senior Developer DataArt

В конце прошлого года мы завершили R&D-проект, посвященный методам машинного зрения в обработке изображений. В результате мы создали ряд усредненных портретов IT-специалистов, работающих с разными технологиями. В этой статье я расскажу об изображениях «типичных» Java и .NET-программистов, подходящих для этого фреймворках и оптимизации процесса.

Тема машинного зрения меня интересует еще с аспирантуры — моя кандидатская была посвящена распознаванию рукописных текстов. За последние несколько лет произошли существенные изменения в методологии и программном обеспечении для машинного зрения, появились новые инструменты и фреймворки, которые хотелось попробовать. В этом проекте мы не претендовали на изобретение уникального решения — главный вклад мы внесли в оптимизацию обработки изображений. Читать дальше →

Умный поиск: как искусственный интеллект hh.ru подбирает вакансии к резюме

Больше половины соискателей ничего не ищут, а создают резюме и просто ждут, когда их пригласят на собеседование или хотя бы пришлют подходящую вакансию. Когда мы думали, как для них должен выглядеть сайт по поиску работы, то поняли, что им нужна всего одна кнопка.



Делать такую систему мы начали полтора года назад — решили построить на машинном обучении алгоритм, который сам выбирал бы подходящие пользователю вакансии. Но мы очень быстро поняли: вакансии, похожие на резюме, и вакансии, на которые владельцу резюме хочется откликнуться, — далеко не одно и то же. Читать дальше →

Использование Intel Movidius для нейронных сетей

Введение


Мы занимаемся разработкой глубоких нейронных сетей для анализа фото, видео и текстов. В прошлом месяце мы купили для одного из проектов очень интересную штуковину:
Intel Movidius Neural Compute Stick.
Intel MNCS

Это специализированное устройство для нейросетевых вычислений. По сути, внешняя видеокарточка, заточенная под нейронные сети, очень компактная и недорогая (~$83). Первыми впечатлениями от работы с Movidius’ом мы и хотим поделиться. Всех заинтересовавшихся прошу под кат.
Читать дальше →

Сети и соседи: методы выживания машинного обучения в “дикой природе”. Открытый семинар AI@MIPT

image

Привет, Хабр! 22 января в 18:30 на Физтехе состоится очередная встреча из цикла семинаров по искусственному интеллекту. Приглашаем вас прокачаться и познакомиться с атмосферой Физтеха :) Михаил Биленко, руководитель подразделения Machine Intelligence and Research в Яндексе и координатор деятельности исследовательской группы Яндекса в МФТИ, расскажет об уникальных отличиях академического и технологического машинного обучения. Семинар пройдет в 107 аудитории Биокорпуса МФТИ, зарегистрироваться можно тут (не забудьте взять паспорт).
О каких отличиях пойдёт речь?

Книга «Глубокое обучение. Погружение в мир нейронных сетей"

image Привет, Хаброжители! Недавно у нас вышла первая русская книга о глубоком обучении от Сергея Николенко, Артура Кадурина и Екатерины Архангельской. Максимум объяснений, минимум кода, серьезный материал о машинном обучении и увлекательное изложение. Сейчас мы рассмотрим раздел «Граф вычислений и дифференцирование на нем» в котором вводятся основополагающее понятие для реализации алгоритмов обучения нейронных сетей.

Если у нас получится представить сложную функцию как композицию более простых, то мы сможем и эффективно вычислить ее производную по любой переменной, что и требуется для градиентного спуска. Самое удобное представление в виде композиции — это представление в виде графа вычислений. Граф вычислений — это граф, узлами которого являются функции (обычно достаточно простые, взятые из заранее фиксированного набора), а ребра связывают функции со своими аргументами.
Читать дальше →

[Перевод] Добро пожаловать в эру глубокой нейроэволюции

image

От имени команды Uber AI Labs, которая также включает Joel Lehman, Jay Chen, Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such и Xingwen Zhang.

В области обучения глубоких нейронных сетей (DNN) с большим количеством слоев и миллионами соединений, для тренировки, как правило, применяется стохастический градиентный спуск (SGD). Многие полагают, что способность SGD эффективно вычислять градиенты является исключительной особенностью. Однако мы публикуем набор из пяти статей в поддержку нейроэволюции, когда нейронные сети оптимизируются с помощью эволюционных алгоритмов. Данный метод также является эффективным при обучении глубоких нейронных сетей для задач обучения с подкреплением (RL). Uber имеет множество областей, где машинное обучение может улучшить его работу, а разработка широкого спектра мощных подходов к обучению (включая нейроэволюцию), поможет разработать более безопасные и надежные транспортные решения.
Читать дальше →

[Перевод] Линейная регрессия с помощью Go


Долгое время меня интересовала тема машинного обучения. Меня удивляло, как машины могут обучаться и прогнозировать безо всякого программирования — поразительно! Я всегда был очарован этим, однако никогда не изучал тему подробно. Время — ресурс скудный, и каждый раз, когда я пытался почитать о машинном обучении, меня заваливало информацией. Освоение всего этого казалось трудным и требовало много времени. Также я убедил себя, что у меня нет необходимых математических знаний даже для того, чтобы начать вникать в машинное обучение.


Но в конце концов я решил подойти к этому иначе. Мало-помалу я буду пытаться воссоздавать в коде разные концепции, начиная с основ и постепенно переходя к более сложным, стараясь охватить как можно больше базовых вещей. В качестве языка я выбрал Go, это один из моих любимых языков, к тому же я не знаком с традиционными для машинного обучения языками вроде R или Python.

Читать дальше →


Последние посты